Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[diaqua- μ_{3}-malonato-iron(II)] monohydrate]

Licai Zhu and Feng Sun*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
Correspondence e-mail: fengsu60@yahoo.cn
Received 21 October 2007; accepted 1 November 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; disorder in main residue; R factor $=0.028 ; w R$ factor $=0.083$; data-to-parameter ratio $=11.3$.

The title coordination polymer, $\left[\left[\mathrm{Fe}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right]_{n}$, was obtained by the hydrothermal reaction of FeSO_{4} with malic acid in alkaline aqueous solution. Each $\mathrm{Fe}^{\mathrm{II}}$ atom is coordinated by four O atoms from three malate ligands and two water molecules, and displays a distorted octahedral geometry. The polychelated malate ligands bridge Fe ions to form corrugated layers; these layers are further assembled by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions to form a three-dimensional supramolecular network, with channels running along the b axis in which the uncoordinated water molecules are located. The solvent water molecule is disordered over two positions, with occupancy ratios of 0.78 / 0.22 .

Related literature

For related literature, see: Iglesias et al. (2003); Karipides \& Reed (1976); Moulton \& Zaworotko (2001).

$V=1731.36(17) \AA^{3}$	$\mu=1.76 \mathrm{~mm}^{-1}$		
$Z=8$	$T=293(2) \mathrm{K}$		
Mo $K \alpha$ radiation	$0.32 \times 0.26 \times 0.23 \mathrm{~mm}$		
Data collection			
Bruker APEXII area-detector	8229 measured reflections		
\quad diffractometer	1603 independent reflections		
Absorption correction: multi-scan	1420 reflections with $I>2 \sigma(I)$		
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$R_{\text {int }}=0.026$	\quad	$T_{\text {min }}=0.587, T_{\mathrm{ma}}=0.670$
:---			

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.083$ independent and constrained refinement
$\Delta \rho_{\max }=0.38 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}

1603 reflections
142 parameters
7 restraints
$\mu=1.76 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
$0.32 \times 0.26 \times 0.23 \mathrm{~mm}$

8229 measured reflections 603 independent reflections $R_{\text {int }}=0.026$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1 W^{\text {i }}$	0.81 (3)	1.95 (3)	2.749 (2)	174 (3)
$\mathrm{O} 1 W-\mathrm{H} 11 \cdots \mathrm{O} 2^{\text {ii }}$	0.820 (10)	1.882 (14)	2.660 (3)	158 (3)
$\mathrm{O} 1 W-\mathrm{H} 12 \cdots \mathrm{O} 5^{\text {iii }}$	0.809 (10)	2.18 (2)	2.856 (3)	141 (3)
$\mathrm{O} 1 W-\mathrm{H} 12 \cdots \mathrm{O} 4^{\text {i }}$	0.809 (10)	2.47 (3)	3.067 (3)	131 (3)
$\mathrm{O} 2 W-\mathrm{H} 21 \cdots \mathrm{O} 30 A$	0.811 (10)	1.866 (14)	2.662 (4)	167 (4)
$\mathrm{O} 2 W-\mathrm{H} 21 \cdots \mathrm{O} 30 B$	0.811 (10)	1.785 (18)	2.575 (13)	164 (4)
$\mathrm{O} 2 W-\mathrm{H} 22 \cdots \mathrm{O} 2^{\text {iv }}$	0.81 (3)	1.915 (11)	2.720 (3)	172 (4)
$\mathrm{O} 30 A-\mathrm{H} 31 B \cdots \mathrm{O} 1^{\mathrm{v}}$	0.84	2.17	2.984 (5)	165
$\mathrm{O} 30 A-\mathrm{H} 32 B \cdots \mathrm{O}^{\text {vi }}$	0.83	2.18	2.887 (5)	142

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iv) $x-\frac{1}{2},-y+\frac{3}{2},-z$; (v) $x-\frac{1}{2}, y,-z+\frac{1}{2}$; (vi) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank South China Normal University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2256).

References

Bruker (2004). APEX2 (Version 6.10) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Iglesias, S., Castillo, O., Luque, A. \& Romaan, P. (2003). Inorg. Chim. Acta, 349, 273-278.
Karipides, A. \& Reed, A. T. (1976). Inorg. Chem. 15, 44-47.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Experimental

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& a=14.2225(8) \AA \\
& b=8.2788(5) \AA \\
& c=14.7043(8) \AA
\end{aligned}
$$

Orthorhombic, Pbca

supplementary materials

Acta Cryst. (2007). E63, m2966 [doi:10.1107/S1600536807055377]

Poly[[diaqua- μ_{3}-malonato-iron(II)] monohydrate]

L. Zhu and F. Sun

Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Iglesias et al., 2003; Moulton \& Zaworotko, 2001; Karipides \& Reed, 1976). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metals ions and bridging building blocks as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and $\pi-\pi$ stacking interactions.

In the structure of (I), each $\mathrm{Fe}^{\mathrm{II}}$ atom is coordinated by four O atoms from three malate ligands and two water molecules, and displayed a distorted octahedral geometry (Fig. 1). Pairs of $\mathrm{Fe} \cdots \mathrm{Fe}$ ions are bridged by the malate ligands at a distance of 6.789 (3) Å to form corrugated layers which are further assembled into a three-dimensional supramolecular network through intermolecular hydrogen bonding interactions (Table 1) with channels running along the b axis hosting the uncoordinated water molecules (Fig 2).

Experimental

A mixture of $\mathrm{FeSO}_{4}(0.5 \mathrm{mmol})$, malic acid $(0.5 \mathrm{mmol}), \mathrm{NaOH}(1 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was placed in a 23 ml Teflon reactor, which was heated at 433 K for three days and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. Single crystals were obtained after washing with water and drying in air.

Refinement

The solvate water molecule is disordered over two positions with occupancy ratios of $0.78 / 0.22$. Water and hydroxyl H atoms were located in difference density Fourier maps and were refined using restraints ($\mathrm{O}-\mathrm{H}=0.82$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.33$ (2) \AA) with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The hydrogen atoms of the disordered water molecule were set to have each the same coordinates for both disordered $\mathrm{H}_{2} \mathrm{O}$ molecules. H atoms attached to carbon were placed at calculated positions and were treated as riding on their parent C atoms with $\mathrm{C}-\mathrm{H}=0.97 \AA$ (methylene) or $0.98 \AA$ (methine), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

supplementary materials

Fig. 2. View of the supramolecular network along the b axis. The minor moiety of the disordered water molecules were omitted for clarity.

catena-[Diaqua-(μ_{4}-malato- $\left.O, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}\right)-\backslash$ iron(II) monohydrate]

Crystal data

$$
\left[\mathrm{Fe}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}
$$

$$
M_{r}=241.97
$$

Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=14.2225$ (8) \AA
$b=8.2788(5) \AA$
$c=14.7043$ (8) \AA
$V=1731.36(17) \AA^{3}$
$Z=8$

Data collection

Bruker APEXII area-detector

 diffractometerRadiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scan
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.587, T_{\text {max }}=0.670$
8229 measured reflections
$F_{000}=992$
$D_{\mathrm{x}}=1.857 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 1506 reflections
$\theta=1.4-28.0^{\circ}$
$\mu=1.76 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Blocky, red
$0.32 \times 0.26 \times 0.23 \mathrm{~mm}$

1603 independent reflections
1420 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.5^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-17 \rightarrow 14$
$k=-10 \rightarrow 7$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.040 P)^{2}+1.9411 P\right]$ $w R\left(F^{2}\right)=0.083$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$ $S=1.10$
$\Delta / \sigma)_{\max }=0.003$	

1603 reflections
142 parameters
7 restraints
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.38$ e \AA^{-3}
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
C1	$0.20311(17)$	$0.8001(3)$	$0.04422(16)$	$0.0237(5)$	
C2	$0.13407(16)$	$0.7905(3)$	$-0.03528(15)$	$0.0219(5)$	
H2	0.1599	0.7192	-0.0822	0.026^{*}	
C3	$0.11770(18)$	$0.9566(3)$	$-0.07561(16)$	$0.0252(5)$	
H3A	0.1781	1.0064	-0.0880	0.030^{*}	
H3B	0.0855	1.0230	-0.0311	0.030^{*}	
C4	$0.06047(18)$	$0.9543(3)$	$-0.16261(16)$	$0.0240(5)$	
Fe1	$0.02997(3)$	$0.68818(4)$	$0.14709(2)$	$0.02428(15)$	
O1	$0.17406(12)$	$0.7638(2)$	$0.12267(11)$	$0.0272(4)$	
O2	$0.28461(13)$	$0.8461(3)$	$0.02750(12)$	$0.0414(5)$	
O3	$0.04782(12)$	$0.7240(2)$	$-0.00225(12)$	$0.0281(4)$	
H3	$0.018(2)$	$0.677(3)$	$-0.0408(17)$	0.042^{*}	
O4	$0.06326(15)$	$0.8301(2)$	$-0.21102(12)$	$0.0317(4)$	
O5	$0.01587(17)$	$1.0778(3)$	$-0.18482(14)$	$0.0469(6)$	
O1W	$0.06641(13)$	$0.4258(2)$	$0.12724(12)$	$0.0263(4)$	
H11	$0.1195(11)$	$0.402(4)$	$0.1098(18)$	0.039^{*}	
H12	$0.0556(19)$	$0.378(4)$	$0.1741(13)$	0.039^{*}	
O2W	$-0.11083(13)$	$0.6067(3)$	$0.12508(14)$	$0.0416(5)$	
H21	$-0.144(2)$	$0.595(5)$	$0.1692(14)$	0.062^{*}	
H22	$-0.143(2)$	$0.630(5)$	$0.0812(14)$	0.062^{*}	
O30A	$-0.2284(3)$	$0.5249(6)$	$0.2582(3)$	$0.0559(11)$	0.77
H31A	-0.2472	0.6044	0.2892	0.084^{*}	0.77
H32A	-0.2001	0.4884	0.3040	0.084^{*}	0.77
O30B	$-0.1891(9)$	$0.5849(17)$	$0.2825(10)$	$0.055(4)$	0.23
H31B	-0.2473	0.6043	0.2888	0.083^{*}	0.23
H32B	-0.2002	0.4883	0.3036	0.083^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0222(13)$	$0.0283(13)$	$0.0207(12)$	$0.0000(10)$	$-0.0009(10)$	$0.0008(9)$
C2	$0.0206(12)$	$0.0278(13)$	$0.0173(11)$	$-0.0018(10)$	$-0.0014(9)$	$-0.0005(9)$
C3	$0.0288(13)$	$0.0256(13)$	$0.0211(12)$	$-0.0023(10)$	$-0.0020(10)$	$-0.0018(9)$
C4	$0.0286(13)$	$0.0251(13)$	$0.0183(11)$	$0.0003(10)$	$0.0005(10)$	$0.0010(10)$
Fe1	$0.0240(2)$	$0.0278(2)$	$0.0211(2)$	$-0.00038(14)$	$-0.00096(13)$	$-0.00105(13)$
O1	$0.0233(9)$	$0.0404(10)$	$0.0180(8)$	$-0.0054(8)$	$-0.0034(7)$	$0.0032(7)$
O2	$0.0217(10)$	$0.0778(15)$	$0.0247(9)$	$-0.0132(10)$	$-0.0012(7)$	$0.0072(10)$
O3	$0.0265(9)$	$0.0387(11)$	$0.0190(9)$	$-0.0141(8)$	$-0.0037(7)$	$0.0006(7)$
O4	$0.0504(12)$	$0.0260(9)$	$0.0187(9)$	$0.0045(8)$	$-0.0066(8)$	$-0.0028(7)$
O5	$0.0678(15)$	$0.0368(11)$	$0.0362(11)$	$0.0268(11)$	$-0.0182(10)$	$-0.0093(9)$
O1W	$0.0281(9)$	$0.0277(9)$	$0.0232(9)$	$-0.0001(8)$	$0.0050(7)$	$0.0010(7)$
O2W	$0.0231(10)$	$0.0722(15)$	$0.0293(10)$	$-0.0078(10)$	$-0.0031(8)$	$0.0100(10)$
O30A	$0.048(3)$	$0.076(3)$	$0.043(2)$	$0.0182(19)$	$0.0119(17)$	$0.024(2)$
O30B	$0.050(9)$	$0.061(9)$	$0.054(9)$	$0.035(7)$	$0.029(7)$	$0.025(7)$

Geometric parameters ($\left.\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{O} 2$	$1.245(3)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.262(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.529(3)$
$\mathrm{C} 2-\mathrm{O} 3$	$1.430(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.515(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9800
$\mathrm{C} 3-\mathrm{C} 4$	$1.516(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{O} 5$	$1.247(3)$
$\mathrm{C} 4-\mathrm{O} 4$	$1.251(3)$
$\mathrm{Fe} 1-\mathrm{O} 5$	$2.118(2)$
$\mathrm{Fe} 1-\mathrm{O} 2 \mathrm{~W}$	$2.1376(19)$
$\mathrm{Fe} 1-\mathrm{O} 4^{\mathrm{ii}}$	$2.1448(17)$
$\mathrm{Fe} 1-\mathrm{O} 1$	$2.1728(18)$
$\mathrm{Fe} 1-\mathrm{O} 3$	$2.2304(18)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$123.9(2)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$117.6(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$118.5(2)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	$110.5(2)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	$108.14(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$110.55(19)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 2$	109.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	109.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	109.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$113.64(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.8

Fe1-O1W	2.2522 (18)
O3-H3	0.81 (3)
O1W-H11	0.820 (10)
O1W-H12	0.809 (10)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 21$	0.811 (10)
O2W-H22	0.81 (3)
O30A-O30B	0.828 (14)
O30A-H31A	0.8441
O30A-H32A	0.8407
O30A-H31B	0.8404
O30A-H32B	0.8348
O30B-H31A	0.8472
O30B-H32A	0.8736
O30B-H31B	0.8482
O30B-H32B	0.8724
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Fe} 1$	121.91 (15)
C2-O3-Fe1	118.91 (13)
C2-O3-H3	114 (2)
$\mathrm{Fe} 1-\mathrm{O} 3-\mathrm{H} 3$	124 (2)
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{Fe}{ }^{\text {iii }}$	127.20 (16)
$\mathrm{C} 4-\mathrm{O}-\mathrm{Fe} 1^{\mathrm{i}}$	146.95 (17)
Fe1-O1W-H11	119 (2)
Fe1-O1W-H12	109 (2)
H11-O1W-H12	109 (2)
Fe1-O2W-H21	118 (3)
Fel-O2W-H22	124 (3)

sup-4

C4-C3-H3A	108.8	$\mathrm{H} 21-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 22$	110 (2)
C2-C3-H3B	108.8	O30B-O30A-H31A	60.9
C4-C3-H3B	108.8	O30B-O30A-H32A	63.1
H3A-C3-H3B	107.7	H31A-O30A-H32A	90.0
O5-C4-O4	122.8 (2)	O30B-O30A-H31B	61.1
O5-C4-C3	118.9 (2)	H31A-O30A-H31B	0.4
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	118.3 (2)	H32A-O30A-H31B	90.4
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 2 \mathrm{~W}$	92.28 (10)	O30B-O30A-H32B	63.3
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 4^{\mathrm{ii}}$	82.98 (7)	H31A-O30A-H32B	90.2
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Fe} 1-\mathrm{O} 4^{\text {ii }}$	109.38 (8)	H32A-O30A-H32B	0.3
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1$	94.01 (9)	H31B-O30A-H32B	90.6
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Fe} 1-\mathrm{O} 1$	161.71 (7)	O30A-O30B-H31A	60.5
$\mathrm{O} 4{ }^{\text {iii }} \mathrm{Fe} 1-\mathrm{O} 1$	88.44 (7)	O30A-O30B-H32A	59.1
$\mathrm{O} 5{ }^{\text {i}}-\mathrm{Fe} 1-\mathrm{O} 3$	99.86 (8)	H31A-O30B-H32A	87.6
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Fe} 1-\mathrm{O} 3$	89.97 (7)	O30A-O30B-H31B	60.2
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Fe} 1-\mathrm{O} 3$	160.39 (8)	H31A-O30B-H31B	0.5
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 3$	72.04 (6)	H32A-O30B-H31B	87.7
O5 ${ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{O} 1 \mathrm{~W}$	170.75 (8)	O30A-O30B-H32B	58.7
O2W-Fe1-O1W	83.78 (8)	H31A-O30B-H32B	87.5
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Fe} 1-\mathrm{O} 1 \mathrm{~W}$	90.41 (7)	H32A-O30B-H32B	0.5
O1-Fe1-O1W	92.26 (7)	H31B-O30B-H32B	87.6
O3-Fe1-O1W	88.54 (7)		

Symmetry codes: (i) $-x,-y+2,-z$; (ii) $x,-y+3 / 2, z+1 / 2$; (iii) $x,-y+3 / 2, z-1 / 2$.

Hydrogen-bond geometry (A, \circ)

$D — \mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 \cdots O1 ${ }^{\text {iv }}$	0.81 (3)	1.95 (3)	2.749 (2)	174 (3)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 11 \cdots \mathrm{O}^{\text {v }}$	0.820 (10)	1.882 (14)	2.660 (3)	158 (3)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 12 \cdots \mathrm{O} 5^{\text {ii }}$	0.809 (10)	2.18 (2)	2.856 (3)	141 (3)
O1W-H12 $\cdots \mathrm{O} 4^{\text {iv }}$	0.809 (10)	2.47 (3)	3.067 (3)	131 (3)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 21 \cdots \mathrm{O} 30 \mathrm{~A}$	0.811 (10)	1.866 (14)	2.662 (4)	167 (4)
O2W-H21ㅇ..O30B	0.811 (10)	1.785 (18)	2.575 (13)	164 (4)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 22 \cdots \mathrm{O} 2^{\text {vi }}$	0.81 (3)	1.915 (11)	2.720 (3)	172 (4)
$\mathrm{O} 30 \mathrm{~A}-\mathrm{H} 31 \mathrm{~B} \cdots \mathrm{O}^{\text {vii }}$	0.84	2.17	2.984 (5)	165
O30A-H32B $\cdots \mathrm{Ol}^{\text {viii }}$	0.83	2.18	2.887 (5)	142

Symmetry codes: (iv) $-x,-y+1,-z$; (v) $-x+1 / 2, y-1 / 2, z$; (ii) $x,-y+3 / 2, z+1 / 2$; (vi) $x-1 / 2,-y+3 / 2,-z$; (vii) $x-1 / 2, y,-z+1 / 2$; (viii) $-x$, $y-1 / 2,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

